Package: EMSNM 1.0
EMSNM: EM Algorithm for Sigmoid Normal Model
It provides a method based on EM algorithm to estimate the parameter of a mixture model, Sigmoid-Normal Model, where the samples come from several normal distributions (also call them subgroups) whose mean is determined by co-variable Z and coefficient alpha while the variance are homogeneous. Meanwhile, the subgroup each item belongs to is determined by co-variables X and coefficient eta through Sigmoid link function which is the extension of Logistic Link function. It uses bootstrap to estimate the standard error of parameters. When sample is indeed separable, removing estimation with abnormal sigma, the estimation of alpha is quite well. I used this method to explore the subgroup structure of HIV patients and it can be used in other domains where exists subgroup structure.
Authors:
EMSNM_1.0.tar.gz
EMSNM_1.0.zip(r-4.5)EMSNM_1.0.zip(r-4.4)EMSNM_1.0.zip(r-4.3)
EMSNM_1.0.tgz(r-4.4-any)EMSNM_1.0.tgz(r-4.3-any)
EMSNM_1.0.tar.gz(r-4.5-noble)EMSNM_1.0.tar.gz(r-4.4-noble)
EMSNM_1.0.tgz(r-4.4-emscripten)EMSNM_1.0.tgz(r-4.3-emscripten)
EMSNM.pdf |EMSNM.html✨
EMSNM/json (API)
# Install 'EMSNM' in R: |
install.packages('EMSNM', repos = c('https://denglinsui.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:e1e5512e69. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 17 2024 |
R-4.5-win | OK | Nov 17 2024 |
R-4.5-linux | OK | Nov 17 2024 |
R-4.4-win | OK | Nov 17 2024 |
R-4.4-mac | OK | Nov 17 2024 |
R-4.3-win | OK | Nov 17 2024 |
R-4.3-mac | OK | Nov 17 2024 |
Exports:CcomputeEM_parameter_sdEM_result_sortEMalgorithmEMbootstrapEMsimulationfnormGgeneratesoftmaxstandardupdate_etaupdate_gammaweight_matrixWgenerate
Dependencies:
Readme and manuals
Help Manual
Help page | Topics |
---|---|
EM Algorithm for Sigmoid Normal Model | EMSNM-package EMSNM |
Ccompute | Ccompute |
Bootstrap Parameter Inference | EM_parameter_sd |
Sort Parameter | EM_result_sort |
Parameter Estimation | EMalgorithm |
Bootstrap Method | EMbootstrap |
Simulation For Estimation | EMsimulation |
Density Value | fnorm |
Subgroup Determination | Ggenerate |
Softmax Value | softmax |
Data Standardlization | standard |
Updata Eta | update_eta |
Updata Alpha and Sigma | update_gamma |
Weighted Inner Product | weight_matrix |
Sigmoid Logistic Data Generation | Wgenerate |